

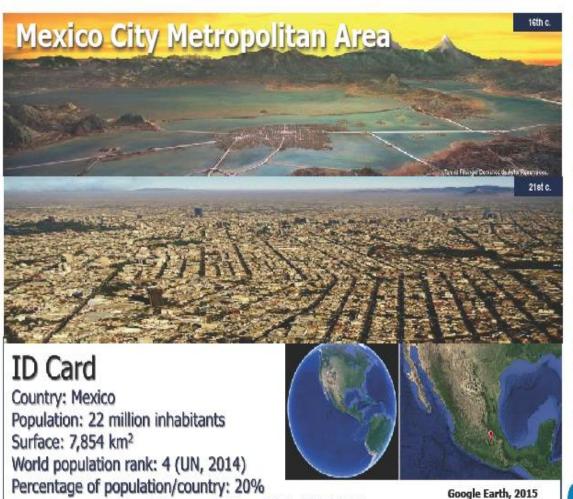
MAWAC-ENA WORKSHOP

PARIS

November 2025

FROM EAUMEGA2015 TO THE MAWAC ALLIANCE

H.E. Ms. Blanca E. Jiménez Cisneros, Ambassador of Mexico to France Senior Researcher at UNAM UNESCO IHP – Former Director Initiator of EAUMEGA2015 and the MAWAC Alliance


CONTEXT: Why "Water and Megacities"?

- Rapid urbanization: increased pressure on water resources and infrastructure
- 12 megacities studied (Tokyo, Mexico City, Paris, Lagos, etc.)
- Most cities located near rivers or coasts -> vulnerable to floods, droughts, and pollution
- Goal: link urban growth, water management, and climate adaptation

Case Study: Mexico City, 2015

Current growth rate of the population: 1.6% (CONAPO)

- Main issues in Mexico City Metropolitan Area -


- Born as a "small island", it expanded to fill all the flat land and mountain flanks of a basin which was closed in its natural state.
- Its population multiplied 20 times during the twentieth century: growing demand for services in the fields of water supply, drainage and sanitation.
- Modification of the hydrological cycle as a consequence of artificial drainage and urbanization of the basin: disappearance of wetlands, lakes and springs; increased surface runoff and drastic reduction in infiltration; diffuse pollution of the aguifer.
- 65% of the water supplied to the MCMA comes from the aquifers, partly at the expense of overexploitation, at a rate of about 28 m³/s.
- Overexploitation has caused: land subsidence, damage to drainage and distribution networks, damage to hydraulic and urban infrastructure in general.
- 35% of the water volume supplied to the MCMA is lost through leakage in the distribution networks, dislocated and fractured by differential land subsidence.
- The importation of water to supplement supply faces high costs, energy demand and growing social and political opposition.
- Land subsidence creates serious frequent flooding, despite the large capacity drainage infrastructure.
- Lack of large scale sanitation infrastructure has resulted in serious water pollution of the basin which receives the effluent from the MCMA.
- Population growth demands more water, not allowing to reduce aquifer overexploitation and the development of new water sources is increasingly costly and complicated.

Case Study: Paris, 2015

PARIS

Percentage of population/country: 16%

Contribution to National GDP: 30%

Current growth rate of the population: 0,5%

Google Maps, 2015

Main issues in Paris –

Management of stormwater for improving the quality of the river Seine.

Sustainable management of runoff in new development areas.

Valuation of wastewater as a resource: water-food-energy nexus.

Development of a high performance, safe, reliable and resilient drinking water and sanitation management.

Implementation of a new organization of local authorities and water policy governance.

Adaptation to expected climate change at mid century: 15% to 50% reduction of flows in the rivers.

Re-discovering of water in the megacity by its habitants.

EAUMEGA2015: A UNESCO Initiative

- •First international conference on Water, Megacities, and Global Change
- Date: 1-4 December 2015, Paris (UNESCO HQ)
- Participants: mayors, city planners, hydrologists, and climate experts
- •Main themes: urban water management, resilience to floods and droughts, urban planning, and climate adaptation
- •Goal: create a bridge between scientific knowledge and urban governance

Key Findings

- Aging water systems in older cities (Paris, London, etc.)
- Unequal access and informal systems in developing megacities (Lagos, Manila, Mumbai)
- Water scarcity in inland cities (Beijing, Mexico city)
- Need for integrated urban water management across sectors

From EAUMEGA to MAWAC

- •The conference resulted in the creation of the Alliance of Megacities for Water and Climate (MAWAC).
- •Its mission: to **share experiences**, **develop solutions**, and **strengthen cooperation** among megacities facing water challenges.
- •Initial member cities: Paris, Tokyo, Mexico City, São Paulo, etc.

Legacy and Impact

- •MAWAC continues to **connect cities and experts worldwide**.
- •The Alliance contributes to SDGs (SDG 6: Clean Water and Sanitation; SDG 13: Climate Action; SDG11: Sustainable Cities and Communities)
- •UNESCO continues to support and collaborate with mayors and technical institutions.
- •MAWAC ENA 2025 workshop is a direct continuation of that legacy.

Thank you for your attention

