

MAWAC-ENA WORKSHOP

PARIS

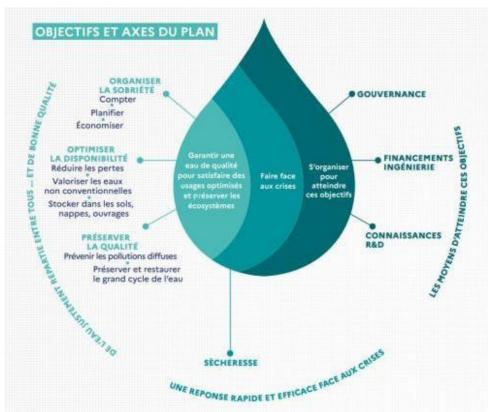
November 2025

Research Project - Water Circular Economy

What's happening in the Greater Paris?

José-Frédéric Deroubaix - Laboratoire Eau, Environnement et Systèmes Urbains Ecole Nationale des Ponts et Chaussées - Institut Polytechnique de Paris Université Paris-Est Créteil

The national background


- The governmental «Plan national pour l'eau» March 2023
- --> 53 actions to prevent crisis situations & ensure an equitable distribution of high-quality water resources
 - ✓ favoring sobriety (data, planing, saving)
 - ✓ opitmizing the disponibility (reduce losses, (re)use of unconventionnal waters, water stockage in aquifers / reservoirs)
 - ✓ preserve the quality (diffuse pollutions, restore water cycle)
- Review of implemented measures (UW)
- --> No less than 11 regulatory texts adopted / valorization of unconventionnal waters
- --> The call for proposals INNOV'EAU 100 m. €
 - ✓ Upstream technics and strategies for natural resource management / climate-change context Sobriety, NBS, stormwater source control
 - √ Reducing hydric losses / addressing patterns of water use

Networks maintenance, tools that foster water efficiency in households, industry, and agriculture e.g., reuse of treated wastewater, process changes, etc.

- ✓ Treatment processes to improve water quality and ecosystem conditions Innovations in the treatment of domestic and industrial wastewater, phytoremediation solutions, etc.
- ✓ Developing data systems for the management of water volumes and quality

 Tools for monitoring and controlling water consumption

Source: Ministère de la Transition Ecologique

Main objective of the National Plan for Water: 1000 treated waste water reuse projects - up to 10% average TWWR by 20230

Experimentations in the Ile-de-France Region

- Separation and valorization at source (urine/fèces/grey water)
- ✓ Main «knowledge hubs» in the Region: OCAPI Observatoire des usages, de l'assainissement et des pratiques innovantes / OPUR Observatoire des Polluants Urbains Parisiens (École des Ponts ParisTech)
 - Implementation of pilot projects for urine-diverting toilets, experiments on decentralized collection and converting of urine into fertiliser, demonstrators for grey water reuse
 - Assistance to projects/programs carried out by city stakeholders (public authorities/private operators)
 - optimise the design,
 - assess the quality of the reclaimed water, the environmental and agronomic performances of fertilisers, the social and economic acceptability of projects.

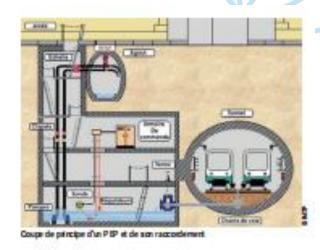
✓ Main operations

- Collective housing buildings in eco-neighbourhoods (ZAC Saint-Vincent de Paul, 600 housing units 1,200 inhabitants),
- Demonstrators on public & private buildings (ENPC, Saint-Denis fire station for recycling water from firefighters' showers and sinks for flushing toilets, watering green spaces and washing equipment),
- Experimental urban planning projects (urine recovery as part of the urbanisation of the "plateau de Saclay")

Grey water reuse in the Saint-Denis fire station © J.F. Deroubaix

https://www.eau-seine-normandie.fr/NL30/Quand-l-urine-devient-une-ressource-pour-la-collectivite

Experimentations in the Ile-de-France Region


Others non conventionnal waters valorization /reuse the Île-de-France Region

✓ Waste Water Reuse

- ➤ Leaders: SIAAP, Eau de Paris, municipalities & their associations
- ➤ Ex: the INNeauVATION program involving SIAAP SENEO LEESU European Institute for Membranes = waste water reuse for irrigation, urban cleaning + multilevers valorization including energy (biogaz), fertilizers, landfill), process (digestion, co-digestion, chemical conversion).

✓ Process water, mine water, rainwater

- Leaders: City of Paris, RATP (Paris public transport authority), mainly for watering municipal green spaces, cleaning roads and technical vehicles, and industrial uses (cooling, washing).
- The City of Paris is one of the few megacities to have a dual drinking/non-drinking water network.
- Collection and use of rainwater widespread in the Île-de-France region in many new public buildings, some collective housing, stadiums, schools and other public facilities, mainly for watering, flushing toilets and outdoor cleaning.

9,75 m. m3 /an collected in the subway network 382885 m3 injected in the non-drinking water network

documents source: APUR, note 262

Remaining barriers / issues

- Health protection and environmental protection framework
- Cost of the infrastructures (funding)
- Lack of structuration of the professionnal sector(s)
- remaining reluctance in some municipalities,
- Pooling of water ressources and uses
- Planning the right conbination in between territorial and urban specificities, purification technologies, network specificities

Circular economy in the water sector and re-use of unconventionnal waters for urban purposes.

JF Deroubaix (j.deroubaix@enpc.fr)

Felicia Marcus (Felicia.Marcus@stanford.edu)

Tom Theis (theist@uic.edu)

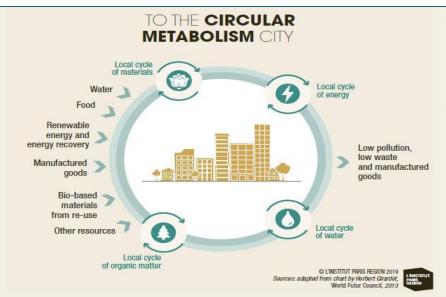
David Erdman (derdman@pratt.edu)

Alaina Harkness (aharkness@currentwater.org) DEP

Kuldip Kumar (Kumar K@mwrd.org)

Mark Gold (mgoldhtb@gmail.com)

Greg Pierce (gpierce@luskin.ucla.edu)


Melissa Pierce (mpierce@currentwater.org)

Joshua Sperling (

Scope of the research project

A bit of a caricature, don't you think?

Let's consider the possibilities and ways to hybridise the two socio-technical systems regarding water ressource...

Considered waters -alternative to drinkable water:

Rainwater, Stormwater, Treated waste water, Greywater, Pumped ground water resulting from urban infrastructures' implementation, Raw waters and process waters, Yellow water, Dark water.

Considered re-uses:

agricultural uses (in the megacities' hinterland), urban uses (irrigation / watering for urban agriculture, for greenspaces / urban refreshment, road network cleaning), domestic uses, aquifer recharge.

Other considered valorisation:

Energy

Project objective n°1

• Inventory and characterization of existing circular economy projects including:

- Use of unconventional water as an alternative to drinking water;
- Source separation and recovery of urine and faeces;
- Recycling of nitrogen, phosphorus and ammonia in wastewater treatment plants

Optimisation of energy performance

Project objective $n^2 + 3 + 4$

Comparison of regulatory drivers (levers and obstacles) for circular economy;

 Costs/benefits analysis (including side-benefits) of the various technologies of treatment possible (reedbed and other planted filters / membrane filtration / UV radiation...)

 Analysis of the appropriation processes and related changes in the «water cultures» of users.

• Identification of opportunities for deploying different types of more or less centralized/decentralized looping systems, according the various urban contexts, e.g.:

- morphology of waste water and drinkable water infrastructures;
- urban shapes;
- 5555

Thank you for your attention

