

Understanding and improving the functioning of stormwater nature-based solutions (NBS_{SW}) under climate extremes. Towards a unified modeling framework for the GreenStorm project

Emmanuel Berthier¹*, Ahmeda Assann Ouédraogo¹, Jérémie Sage¹, Konstantinos Soulis², Ico Broekhuizen³, Anna Palla⁴,& Marie-Christine Gromaire⁵

* email: emmanuel.berthier@cerema.fr.

- ¹Cerema, Equipe TEAM, 12 rue Teisserenc de Bort, F 78190, Trappes, France
- ²Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Lab. of Soil Science and Agricultural Chemistry, GIS Research Unit, 75, Iera Odos str., 11855 Athens, Greece 3 Department of Civil, Environmental and Natural Resources, Engineering, Lulos, Swedon
- ³ Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden ⁴Dept. of Civil Chemical and Environmental Engineering, University of Genova, Via Montallegro 1, 16145 Genova, Italy
- ⁵LEESU, ENPC, Institut Polytechnique de Paris, Univ Paris Est Créteil, Marne-la-Vallée, France

Context

The European GreenStorm project (DUT Call 2022) aims to better deploy nature-based solutions for the adaptation to different climate extremes.

It focuses on stormwater management solutions (NBS_{sw}), across a diversity of types and climates.

A key step is to develop and use a unified modeling framework at the facility scale to improve both their design and performance assessment.

NBS_{sw} behavior is complex with a large number of processes and parameters in the soil-plant-atmosphere continuum.

Specifications for the unified modeling framework:

Adapted for:

- NBS_{sw} diversity and variety of European climates (including future climates).
- NBS_{sw} performance for 3 types of extremes issues: runoff retention during storms, cooling atmosphere during heatwaves (using evapotranspiration), vegetation resilience during drought periods.
- Predictive mode (i.e. properly design a NBS_{SW} without observation and calibration).
- → Simulations at fine time steps (min) over long durations (year).
- → Development & evaluation of the framework based on the NBS_{sw} monitoring database from the GreenStorm project consortium

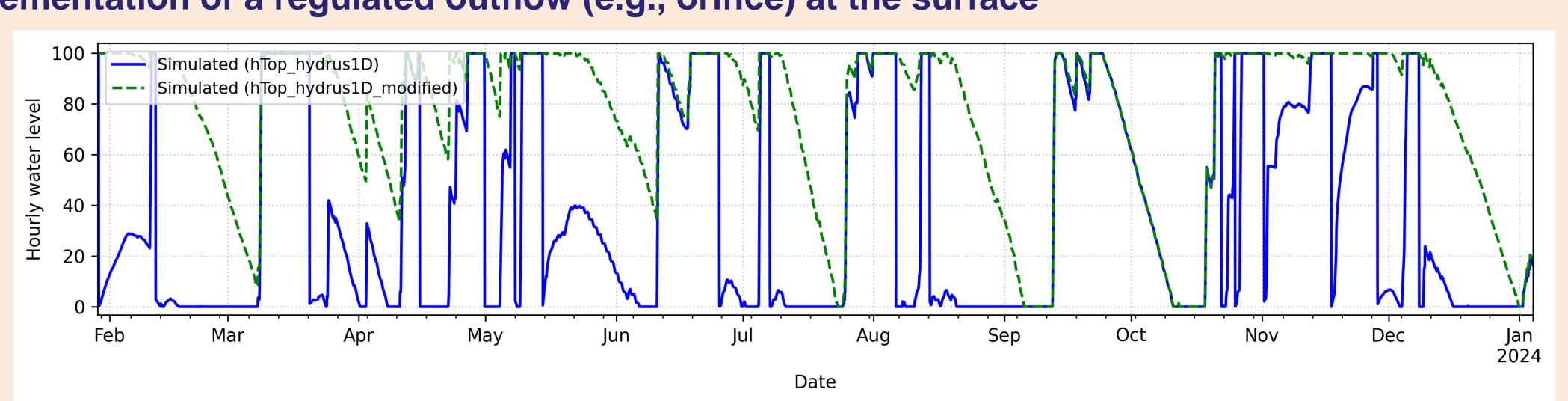
dS_{surf} O

Modeling approach

Based on a generic diagram of hydrological functioning accounting for:

- a diversity of layers
- the range of fluxes and stocks documented in our monitoring database (underlined),

Hydrus software (Simunek, 1998) was selected: physically-based simulations, in partially saturated porous media, with a detailed consideration of vegetation


Limitations identified with Hydrus (yellow highlights)

 → consolidation of the modeling framework ongoing (via independent modules or modifications within the 1D code)

Evaluation methodology For a given NBS_{SW} : based on physical system knowledge and its functioning Conceptualization Priors parameterizations of the Atmospheric forcing: of the model model ("plausible" intervals) PET/Rain **Bottom & Initial** Identification & conditions Characterisation of extreme Modeling periods Analyze the range of simulated results/ observations Sensitivity analysis of 3 target variables (drainage, water content, ET, etc.) Accepted simulations and Parameter sets Model's predictive capability → Need to interface Hydrus with Python environment Pre & post processing in the Python codes

Example of Hydrus enhancement: implementation of a regulated outflow (e.g., orifice) at the surface

- Surface reservoir water balance is sometimes inaccurate due to a sudden drop in water level from the maximum storage to 0
- During transition from a constant head condition to a flux condition in surface
- → modification of the code
- Implementation of a regulated outflow in progress

Perspectives

Apply the evaluation methodology on green roofs, rain garden, and rain tree

consolidation of the method

Try to develop Hydrus (1D) & its environment to be able to represent a wide range of NBS_{SW}

References

The European GreenStorm project: https://arceau-idf.fr/en/projects/greenstorm

Ouédraogo, A.A., et al., 2025. Modelling evapotranspiration in urban green stormwater infrastructures: importance of sensitivity analysis and calibration strategies with a hydrological model. https://doi.org/doi.org/10.1016/j.envsoft.2025.106319

Pons, V., et al., 2023. Practice makes the model: A critical review of stormwater green infrastructure modelling practice. Water Research 236, 119958. https://doi.org/10.1016/j.watres.2023.119958 Simunek, J., et al., 1998. HYDRUS-1D. Simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media, version, 2.