



GreenStorm

Design and deployment of stormwater nature-based solutions for resilient and livable cities

Context

- Nature-based solutions (NBS_{SW}) for the management of urban stormwater: green-infrastructures to retain water close to where it falls and prevent floods or pollutant discharge to surface waters
- A variety of potential benefits in addition to stormwater management functions: attenuation of local temperatures; landscape improvement; support for urban biodiversity; other health or well being benefits...
- Yet knowledge gaps: performance & resilience for present and future climate extremes (e.g., droughts, heatwaves...)? Acceptability for residents or municipal services? Pathways for a city-scale implementation? Benefits to be expected?

Objectives

- Improve our understanding of the functioning of NBS_{sw} under current and future climate extremes, based on observations from different European countries and numerical modelling
- Engage stakeholders in a dialogue with researchers to develop innovative NBS_{sw} designs, to ensure their performance and resilience for future climate extremes, as well as their acceptability for residents or municipal services
- Identify drivers or tools for city-scale implementation of NBS_{sw} and assess corresponding hydrological and thermal benefits under current and future climate conditions.

General approach Co-creation Observations -Modelling Development of modelling framework for a variety of NBS_{SW} design of NBS_{SW} **Climate** Local scale **Diversity of** Efficiency, resilience and acceptability of NBS_{sw} extremes socio-technical datasets context Current knowledge and practices | Improved NBS_{sw} design guidelines (development of climate scenarios) North to south Europe **Upscaling** Copenhagen Full-scale demonstration of NBS_{SW} in a Danish neighborhood **Athens Paris** Transferability to other contexts? Pathways for a wider implementation Genoa City scale Östersund Development of NBS_{SW} deployment scenarios Assessment of corresponding environmental benefits Policy-enabling modelling **Co-construction**

Consortium

- 14 partners from 5 European countries: from the extreme North to the South of Europe, a variety of climate, urbanistic and socio-technical contexts
- 7 academic partners: a diversity of disciplines (hydrology, ecophysiology, sustainability sciences, climatology...) and approaches (in-situ monitoring, field numerical modelling, surveys, creation workshops, action research...)
- 6 local authorities and 1 SME: anchoring the research in the reality on the ground; facilitating the transferability of project results; showcasing successful NBS_{sw} implementation

Expected outcomes: directions for the design of efficient and resilient NBS_{SW}; demonstration of the relevance of participatory approaches in NBS_{sw} projects; strategies for successful implementation of NBS_{sw} depending on local context; city-scale assessment of the benefits of NBS_{SW} to guide the intervention of public authorities

Partners: Ecole des Ponts Paristech; Cerema; Université Gustave Eiffel; Kobenhavns Universitet; Universita Degli Studi di Genova; Geoponiko Panepistimion Athinon; Lulea Tekniska Universitet; Kobenhavns Kommune; Athens Anaplasis S.A.; Ville de Paris; Département de Seine Saint Denis; Comune di Genoa; Östersund Kommun; Koordinat (SME)

- Marie-Christine Gromaire, Ecole des Ponts ParisTech, marie-christine.gromaire@enpc.fr
- Jérémie Sage, Cerema, jeremie.sage@cerema.fr

