

Le Jardin de Pluie Urbain (JPU) une solution qui maximise l'évapotranspiration

Alimenté par les EP de toiture ou de ruissellement, il est composé d'un substrat végétal positionné au dessus d'une grande capacité de stockage d'eau. Grâce au principe des vases communicants, il peut être enterré ou hors-sol pour s'adapter aux contraintes urbaines d'un site.

L'eau de pluie décantée puis stockée, est restituée au substrat végétal pendant les périodes de sécheresse pour assurer l'autonomie hydrique des plantes. L'eau est toujours disponible et maximise l'évapotranspiration pour combattre le phénomène d'îlot de chaleur urbain en ville car elle est continuellement restituée au substrat végétal.

Une mesure de l'évapotranspiration

Une première étude menée par le **CEREMA**, à Orléans en 2016 sur une TTV stockante en sedum, avait montré un abattement des pluies annuelles de 75% grâce à l'évapotranspiration.

Une première expérimentation par Source Urbaine qui a eu lieu aux Jardins de Gally en 2019, subventionnée par l'**OFB**, a mis en évidence une évapotranspiration des plantes très supérieure à celles que les connaissances scientifiques laissaient escompter. Le bilan hydrique réalisé a montré un abattement des eaux de pluie de **85%** pour un rapport impluvium/jardin de quatre.

Compte tenu de ces résultats très encourageants une deuxième expérimentation, associant une TTV et un JPU pour atteindre la « zéro rejet », a eu lieu en 2022 à l'Ecole des Mines de Saint Etienne.

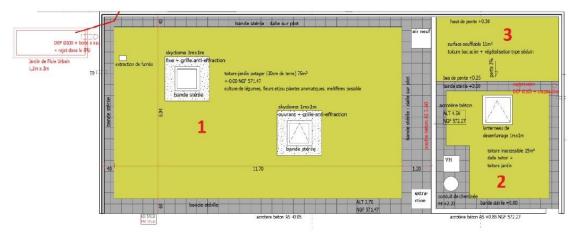


Figure 1 : Plan de la Toiture Terrasse Végétalisée (source Atelier d'architecture Rivat – dossier N°1459)

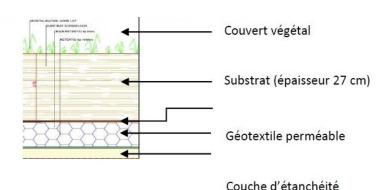


Figure 2 : Coupe de la TTV sur les zones 1 et 2 (source SUPER)

Expérimentation de l'EMSE

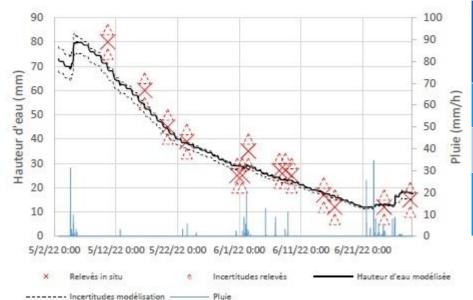
Expérimentation de l'EMSE

L'objectif de l'étude étant la réalisation d'un bâtiment zéro rejet pluvial via les plantes l'étude a suivi les paramètres suivants :

- La pluviométrie
- ETR corrélée à l'ETP
- Le suivi de l'humidité du substrat
- Le suivi des plantes

Le tableau suivant présente la pluviométrie, la hauteur d'eau stockée dans les alvéoles, le taux d'humidité du substrat

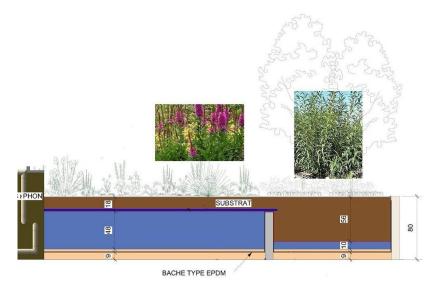
date	mai	<u>juin</u>	<u>juillet</u>	<u>août</u>	septembre	octobre	novembre	décembre	janvier	février	mars	avril	mai
pluie mensuelle mm	35	<u>105</u>	<u>10</u>	<u>105</u>	105	40	80	60	30	0	0	30	80
hauteur alveoles mm	9	<u>2,5</u>	<u>3</u>	<u>o</u>	5	9	8,8	8,5	8,2	8,4	8,4	8,8	8,6
teneur en eau substrat	21%	<u>15%</u>	<u>16%</u>	<u>17%</u>	16%	16%	13%	19%	19%	17%	17%	20%	22%



Expérimentation de l'EMSE

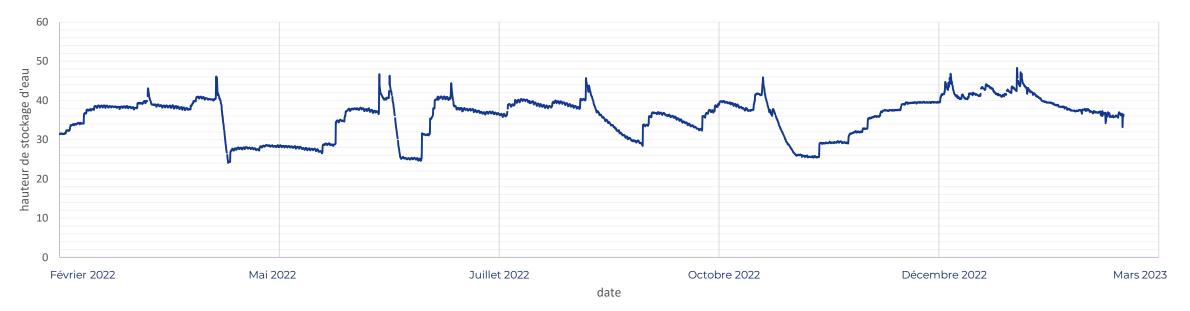
Le calcul de l'évapotranspiration, l'ETR des plantes de la TTV à été évaluée par la différence entre l'eau entrante, l'humidité du substrat et le niveau d'eau dans les alvéoles. Il est également corrélé à l'ETP par un coefficient K - (ETR=K*ETP)

Hauteur d'eau dans les alvéoles de la TTV Modélisation et relevés Version avec surface de dalles effective de 15 m²



Période	Nb de jours	Teneur en eau du substrat	ETR en mm	en mm/j/m²	ETP Davis en mm	en mm/j/ m²	K saison
mai	11	13 à 18 %	44,4	4,04	55	5,00	0,81
Juin-Aout	56	10à 17%	120,4	2,15	266	4,75	0,45
Octobre Novembre	15	15à18%	26,2	1,75	29	1,93	0,90

POC – Jardins de Gally



Bilan hydrique 02/2022 à 03/2023

Jardin de Pluie Urbain - Saint Denis

Période de mesure :

Pluie collectée :

Eau consommée par ETR:

Eau stockée ou évacuée

Abattement

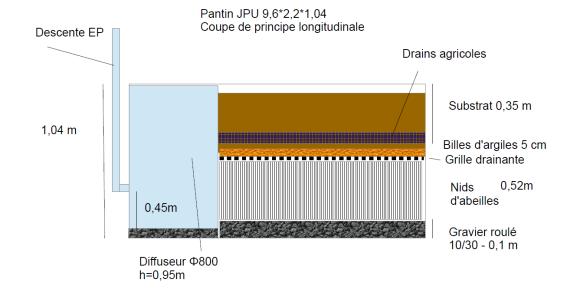
ETR:

février 2022 à Mars 2023

 $33m^3$

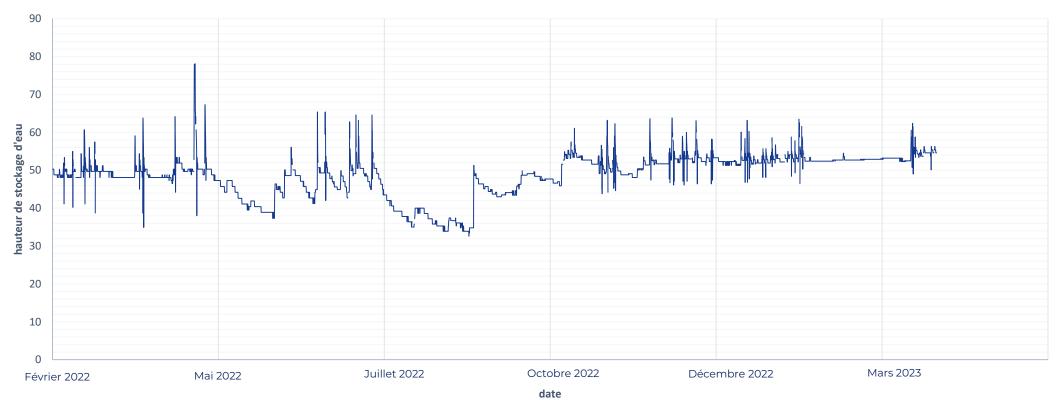
 $29m^3$

 $4m^3$


87%

7,9 mm/j

Expérimentation - Pantin



Expérimentation - Pantin

Jardin de Pluie Urbain - Pantin

Période de mesure :

Pluie collectée :

Eau consommée par ETR:

Eau stockée ou évacuée

Abattement

ETR:

février 2022 à Mars 2023

 $120m^{3}$

 $100m^{3}$

 $20m^3$

83%

14,5 mm/j

Conclusion

Le tableau ci dessous présente différents coefficients K pour l'évapotranspiration de TTV et de JPU.

Ces valeurs ne sont pas scientifiquement comparables du fait des conditions d'expérimentation très différentes mais elle soulignent l'importance de l'évapotranspiration lorsque le complexe "substrat/plantes" dispose d'une quantité suffisante d'eau. C'est d'autant plus le cas pour les JPU où même une simple averse est rendue efficace grâce à son rapport impluvium/surface végétale est élevé.

	TTV 1	TTV 2	TTV réserve 1	TTV réserve 2	JPU1	JPU2
rapport impluvium/substrat planté	1	1	1	1	4	6
épaisseur stockage (cm)	0	0	15	10	50	50
épaisseur substrat (cm)	5	15	5	30	15	50
type de plantes	sedum	sedum	sedum	selection toundra	vivace zone humide	vivaces grandes feuilles
Moyenne coef K saison ETR/ETP	0,1	0,3	0,4	0,4 à 0,9	3,7	6,5

Merci!

Végétaliser et embellir la ville

Lutter contre des îlots de chaleur

Valoriser l'eau de pluie

Votre contact

Nicolas Griglio

nicolas.griglio@sourceurbaine.fr +33 7 87 97 60 56

Flashez ce QR pour prendre RDV

Nos partenaires

